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1 Laboratoire de Physique Théorique et Modèles Statistiques, UMR 8626 du CNRS, Université
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Abstract
The average density of states (DoS) of the one-dimensional Dirac Hamiltonian
with a random mass on a finite interval [0, L] is derived. Our method relies
on the eigenvalue distributions (extreme value statistics problem) which are
obtained explicitly. The well-known Dyson singularity �(ε;L) ∼ − L

|ε| ln3 |ε|
is recovered above the crossover energy εc ∼ exp −√

L. Below εc we find a
log-normal suppression of the average DoS �(ε;L) ∼ 1

|ε|√L
exp

(− 1
L

ln2 |ε|).

PACS numbers: 72.15.Rn, 73.20.Fz, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Let us consider the one-dimensional (1D) Dirac equation HDψ = εψ for the Hamiltonian

HD = −αx i∂x + β φ(x), (1)

acting on a two-component spinor. φ(x) plays the role of a mass and will be taken as
random. The Dirac matrices are chosen as β = γ 0 = σ1 and αx = γ 0γ 1 = −σ2,
where σi are the usual Pauli matrices, corresponding to the representation of the Clifford
algebra γ 0 = σ1 and γ 1 = −iσ3. One-dimensional random Dirac Hamiltonians appear
in several contexts of condensed matter physics ranging from disordered half-filled metals
[1, 2], random spin-chain models (random antiferromagnetic spin-1/2 chains [3–5], random
transverse field Ising spin-1/2 chains [6–8], spin-Peierls chains and spin-ladders [9, 10])
to organic conductors [11]. Another common representation of Dirac matrices β = σ1

and αx = σ3, related to the one chosen in the present paper by a unitary transformation
U = (1 + iσ1)/

√
2, shows that the Dirac equation has the form of the linearized Bogoliubov–

de Gennes equation describing a superconductor with random gap [12, 13]. We obtain a
connection to another important, and well-studied problem by squaring the Dirac Hamiltonian:
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H2
D = −∂2

x + φ(x)2 + iγ 1φ′(x) = −∂2
x + φ(x)2 + σ3φ

′(x). This leads to a couple of isospectral
supersymmetric Hamiltonians H± = − d2

dx2 + φ(x)2 ± φ′(x). The corresponding Schrödinger
equation can be transformed into a Fokker–Planck equation ∂tP = ∂x(∂x ∓ 2φ(x))P

describing classical diffusion in random force field, studied in numerous works [8, 14–20].
If the random mass is a Gaussian white noise with characteristics φ(x) = μg and
φ(x)φ(x ′) − φ 2 = g δ(x − x ′), where · · · denotes the average with respect to its realizations,
an exact analytical expression for the density of states (DoS) was obtained [12, 17] (see
section 8.2 of [13])4. Another solvable case is the one where the mass is chosen as a telegraph
noise [22] (i.e. with exponentially decaying correlations). The same low-energy properties
are obtained. This is related to the fact that any short-range correlated noise, upon large-scale
renormalization, reduces to a Gaussian white noise.

Here we focus on the case of Gaussian white noise with φ(x) = 0, which is known to
yield a Dyson singularity for the DoS �(ε → 0) � g

|ε| ln3(g/|ε|) and a delocalization transition
at ε → 0. The aim of the present paper is to study how the Dyson singularity of the DoS is
affected by boundary conditions. We denote by �(ε;L) the DoS of the Hamiltonian (1) on a
finite interval [0, L]. We will obtain the behaviour of the average DoS �(ε;L) for a finite length.

2. Boundary conditions

Let us specify the two different types of boundary conditions which we shall consider.

Type (D). A simple way to introduce boundary conditions ensuring confinement in a domain D
is to consider the Dirac equation [i∂/ − φ(x)]ψ(x, t) = 0 with infinite mass φ(x) = � → ∞
for x outside D. This leads to the so-called bag model of hadronic physics [23]: the boundary
conditions are (1 + i	n · 	γ )ψ |∂D = 0, where 	n is the unit vector normal at the boundary
∂D of the domain. They force the vanishing of the component of the current density
	Jψ = ψ̄ 	γψ perpendicular to the boundary, where ψ̄ = ψ †γ 0. In our case, for x ∈ R

−

the stationary solution of the Dirac equation for a constant mass is a plane wave ψ(x) = u eikx

where the spinor u is the solution of (αxk + β�)u = εu, for ε2 = k2 + �2. In the limit
� → ∞ it becomes an evanescent wave with k � −i�; this yields (1 − iγ 1)ψ(0) = 0.
Similarly, at the other boundary we find (1 + iγ 1)ψ(L) = 0. We denote these constraints as
‘type (D) boundary conditions’. With our representation of the Clifford algebra, they read
(1−σ3)ψ(0) = (1+σ3)ψ(L) = 0, i.e. each of the two components of the bispinor ψ = (ϕ, χ)

must vanish at one side: χ(0) = ϕ(L) = 0. This condition obviously ensures the absence of
Dirac current flow Jψ = −ψ †σ2ψ across the boundaries.

Type (S). A second interesting choice is given by (1 + σ3)ψ(0) = (1 + σ3)ψ(L) = 0. These
conditions coincide with Dirichlet boundary conditions for the associated supersymmetric
Schrödinger Hamiltonian H± and will be denoted as ‘type (S)’.5

4 Note also [21] where the most general 1D Dirac Hamiltonian HD = σ2 i d
dx

+ σ1φ(x) + σ3λ(x) + V (x) was studied
for φ, λ and V Gaussian white noises. This study showed that there is no other DoS singularity than the one arising
in the random mass case.
5 General boundary conditions. It is possible to set up more general conditions forcing the absence of probability
current flow at the boundaries: these are the set of conditions parametrized by some real number ϑ [24]:

(eiϑγ 5
+ i	n · 	γ )ψ |∂D = 0 where γ 5 is the chirality matrix, given by γ 5 = γ 0γ 1 in dimension d = 1 + 1. These

general boundary conditions are obtained as follows: one considers the Dirac equation in a bounded domain D. The
boundary conditions can be written as i	n · 	γψ |∂D = (A+B γ 5)ψ |∂D , where 	n is the unit vector normal to the domain,
A and B are two complex numbers. The fact that (	n · 	γ )2 = −1 leads to A2 − B2 = 1. Upon imposing the normal
component of the Dirac current to vanish 	n · 	Jψ |∂D = 0, we find A ∈ R and B ∈ iR, and thus the desired form. With
the representation chosen in our paper these general boundary conditions take the form (e−iϑ±σ2 ± σ3)ψ(x±) = 0
with x− = 0 and x+ = L. For type (D) we have ϑ+ = ϑ− = 0, and for (S) ϑ− = π, ϑ+ = 0. Since ϑ± �= 0 or π

breaks the particle–hole symmetry, this case will not be considered here.
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3. Eigenvalue distributions

We now consider the Dirac Hamiltonian (1) on [0, L] for the two kinds of boundary
conditions introduced above. The particle–hole symmetry takes the form ψ → ψ̃ = σ3ψ :
σ3HDσ3 = −HD. Since both boundary conditions preserve the particle–hole symmetry,
eigenvalues appear in pairs ±εn (by convention we choose n = 1, 2, 3, . . . and εn > 0). We
denote by �(ε) the DoS per unit length for an infinite volume. It is related to the DoS of the
finite-size system by �(ε) = limL→∞ �(ε;L)/L. Because of particle–hole symmetry we can
restrict ourselves to ε > 0.

Our method to obtain the average DoS �(ε;L) relies on the evaluation of the eigenvalue

distributions Wn(ε;L)
def= δ(ε − εn[φ,L]), derived in [25] for (S)-boundaries. Finding the

distributions of the (ordered) variables εn corresponds to an ‘extreme value problem’ (here for
correlated variables). We recall the idea of the method: let us imagine that we impose the
boundary conditions to hold solely at one end of the interval, say x = 0. As x increases the
two components of the spinor ψ(x) = (ϕ(x), χ(x)), which solves the Dirac equation, vanish
alternately; we denote by �m the distance between a node of ϕ(x) and the closest node of
χ(x). Since the evolution of ψ(x) is Markovian, the �m’s are identical and independently
distributed (i.i.d.) random variables whose statistical properties are obtained by solving a first
passage time problem (see [25] for details). Let us introduce the distribution πM(y) of the
sum of M i.i.d. rescaled lengths y = (�1 + · · · + �M)N (ε), where

N (ε) =
∫ ε

0
dε′ �(ε′) =

ε→0

g/2

[ln(2g/ε) − C]2 + π2/4
+ O

(
ε2

ln2 ε

)
≈ g

2 ln2(g/ε)
(2)

is the integrated DoS per unit length for an infinite volume; C = 0.577 . . . is the Euler–
Mascheroni constant (the exact expression for N (ε) may be found in [12, 13, 17]). This
rescaling is motivated by the fact that �m = 1/(2N (ε)) [25], and hence y = M/2. Both
boundary conditions at x = 0, L are satisfied whenever the sum �1 + · · · + �M coincides with
the length L. Therefore, the distribution Wn(ε;L) is given by6

Wn(ε;L) = L�(ε)�n(LN (ε)), (3)

where the dimensionless function �n(y) is related to the distributions πM(y) as follows:

Type (S). The same component of the Dirac spinor must vanish at the two sides of the interval.
Therefore, L must coincide with a sum of an even number of lengths �m’s (see equation (132)
of [25]):

�(S)
n (y) = π2n(y) . (4)

Type (D). Both spinor components must vanish at one side of the interval. Hence, L must
coincide with a sum of an odd number of lengths �m’s:

�(D)
n (y) = π2n−1(y) . (5)

The distributions πn(y) are explicitly known in the low-energy limit ε  g, i.e. for
gL � 1, where Wn(ε;L) is essentially concentrated below g. Indeed, the characteristic
function of the lengths �m’s is given by [25] e−α� � cosh−1 √

α/N (ε). Whence we may
write

πn(y) �
∫
B

dq

2iπ

eq y

coshn √
q

, (6)

6 Note that the change of variable from ε to LN (ε) corresponds to the so-called spectrum unfolding leading to a
unit density of variables.
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where the integration is taken along the Bromwich contour. Starting from this integral
representation we obtain the following explicit formulae:

π2k+1(y) = 22k

√
π y3/2

∞∑
n=0

(−1)n+k(2n + 1)

(
n + k

n − k

)
e− (n+1/2)2

y (7a)

π2k(y) = 22k

√
π y3/2

∞∑
n=0

(−1)n+kn

(
n + k − 1

n − k

)
e−n2/y , (7b)

whose demonstration is provided in appendix A.

4. DoS on a finite interval

The average DoS can be related to the distributions recalled above:

�(ε;L) =
∞∑

n=1

Wn(ε;L). (8)

Summation over n leads to

�(ε;L) = L�(ε) D(LN (ε)) , (9)

where the dimensionless function D(y) depends on boundary conditions. Note that this DoS
has some interest for studying the problem of 1D classical diffusion in a random force field
with dilute absorbers [26] (see also [27] for an analysis of this problem with the real space
renormalization group).

Boundary conditions of type (S). The summation of the (S)-type distributions (4) gives

DS(y) =
∫
B

dq

2iπ

eq y

sinh2 √
q

. (10)

The integrand is meromorphic in the complex plane (there is no branch cut since
√

q is the
argument of an even function). The integral can be computed from the residue theorem. The
integrand possesses a single pole at q = 0 with residue equal to unity and an infinite number
of double poles on the real axis at q = qn = −(nπ)2, with n = 1, 2, 3, . . .. Using that
sinh2 √

q �
q∼qn

1
4qn

(q − qn)
2, we find the residues Res

[
eqy

sinh2 √
q

; qn

] = d
dq

[
(q−qn)

2 eqy

sinh2 √
q

]
q=qn

=
(2 + 4qn) eqny . Therefore, we have

DS(y) = 1 + 2
∞∑

n=1

(1 − 2(nπ)2y) e−(nπ)2y = 4√
π y3/2

∞∑
n=1

n2 e−n2/y, (11)

where the second series expansion may readily be found from Poisson’s summation formula
(see appendix B). We may also check that the summation of (7b) leads to (11).

Boundary conditions of type (D). Compared to the (S) case, an additional cosh
√

q appears in
the integrand upon summation of (5):

DD(y) =
∫
B

dq

2iπ

cosh
√

q

sinh2 √
q

eq y. (12)

It adds a sign (−1)n to the residues obtained in the previous case and we thus find

DD(y) = 1 + 2
∞∑

n=1

(−1)n(1 − 2(nπ)2y) e−(nπ)2y = 1√
π y3/2

∞∑
n=0

(2n + 1)2 e−(2n+1)2/4y. (13)
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Figure 1. Functions DS(y) (black continuous line) and DD(y) (dashed blue line). First
distributions �n(y) are also plotted in thin lines.

The two different boundary conditions can be treated on the same footing by writing

DS,D(y) =
(

1 + 2y
d

dy

) ∑
n∈Z

(±1)n e−(nπ)2y (14)

and

DS,D(y) = 4√
πy3/2

∞∑
n=0

(n + η)2 e− (n+η)2

y with η =
{

0 for S

1/2 for D.
(15)

This second series expansion allows us to analyse the low-energy behaviour. It is worth noting
that this representation for D(y) is very similar to the corresponding one for �1(y), for both
kind of boundary conditions. In the (S) case equations (A.4) and rhs of (13) only differ by
the (−1)n+1 in the sum, while in the (D) case (11) and rhs of (A.2) differ by a (−1)n(2n + 1).
As a result we have D(y → 0) � �1(y) in both cases. The two functions are plotted in
figure 1. DS(y) presents a monotonic behaviour which leads to a diminution of the low-
energy DoS for small energies. Interestingly for (D) boundary conditions, while exponentially
suppressed for y → 0,DD(y) increases for intermediate values of y; as a result (D) boundary
conditions induce an increase of the DoS at intermediate energies.

The low-energy DoS presents a log-normal suppression:

�S(ε;L) � 16

|ε| √2πgL
e− 2

gL
ln2(g/|ε|) for |ε|  εc = g e−√

gL/2 (16)

and

�D(ε;L) � 4

|ε| √2πgL
e− 1

2gL
ln2(g/|ε|) for |ε|  ε′

c = g e−√
2gL . (17)

The DoS reaches its maximal value at ε∗ ≈ ge−gL/4 in the (S) case and at ε′
∗ ≈ ge−gL in the

(D) case.
The weaker log-normal suppression in the (D) case as compared to the (S) case is due

to the fact that for a given realization of the disorder, the spectra for the two different kinds
of boundary conditions are such that εD

1 < εS
1 < εD

2 < εS
2 < · · ·, where

{
εD,S
n

}
denotes the

spectrum for boundary conditions of type (D) and (S) respectively.
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Figure 2. Average DoS per unit length for a finite L; parameter is g = 1. Left: (S) boundary
conditions for sizes L = ∞, 30, 25, 20, 15, 10 and 5. Right: (D) boundary conditions for sizes
L = ∞, 12, 6, 5, 4, 3, 2 and 1.

Since D(y → ∞) � 1, equations (11, 13), we recover the Dyson singularity for
intermediate energies, as expected:

�(ε;L) � L �(ε) ≈ Lg

|ε| ln3(g/|ε|) for εc  |ε|  g. (18)

At higher energies |ε| � g, one should recover the free DoS: �(ε;L) � L/π .
The average DoS �(ε;L) is represented for various values of L in figure 2. For the lowest

energies ε � ε∗ ∼ ge−gL, the DoS is suppressed in both cases. In the intermediate range
ε∗ � ε � εc ∼ ge−√

gL, the effect of the boundaries is to reduce the DoS in the (S) case but
surprisingly to increase the DoS in the (D) case.

As L is decreased the Dyson singularity is rapidly converted to a strong depletion of
the low-energy DoS. For (S) boundary conditions this occurs for a surprisingly relatively
large length L∗ ∼ 10/g. For the (D) case the memory of the Dyson singularity persists
up to smaller lengths since an increase of the low-energy DoS is apparent up to L′

∗ ∼ 1/g

(figure 2).

5. Conclusion

By using known results on the energy-level distributions Wn(ε;L) we have obtained the
average density of states of a random Dirac Hamiltonian on a bounded domain [0, L]. For
gL � 1, we have seen that the DoS does not feel the boundary as energies become larger than
the energy scale εc ∼ g e−√

gL. In the intermediate range ε∗ � ε � εc, where ε∗ ∼ g e−gL,
the DoS may be diminished by boundaries, (S) case, or increased, (D) case. For the lowest
energies the DoS presents a log-normal suppression for both kinds of boundary conditions.

Note that the effect of one boundary condition was already studied in [10], where the
average local DoS on a semi-infinite line was computed by the Berezinskı̆i technique. These
authors found an increase of the local DoS by a factor ln(g/|ε|) � 1 close to the boundary (at a
distance much smaller than the scale g−1 ln2(g/|ε|)). Here, by imposing boundary conditions
at the two sides of finite interval, we have shown that boundary conditions can induce both an
increase or a decrease of the DoS.

It is interesting to interpret our result within the classical diffusion problem. The (S)
boundary corresponds to diffusion in a random force field with two absorbing boundaries
while the (D) case corresponds to one reflecting boundary and one absorbing. The return
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probability is the Laplace transform of the DoS; therefore, the log-normal suppression
of the average DoS coincides with a log-normal decay of the average return probability∫ L

0 dx P (x, t → ∞|x, 0) ∼ exp − 1
gL

ln2(g2t).
To close this paper, let us examine the relation between our main result (9), (15) with the

localization properties. It is only below the crossover energy εc ∼ g e−√
gL that eigenstates

do feel the boundaries. The transition corresponds to the case where the localization length is
of the order of the system size ξεc

∼ L; therefore, this criterion suggests that the eigenstate of
energy ε is localized on a scale ξε ∼ g−1 ln2(g/|ε|).

The question of localization was studied in several works ([28, 29] for a tight
binding Hamiltonian with random hoppings and in [17] for the continuous supersymmetric
Hamiltonian) that have demonstrated the vanishing of the Lyapunov exponent7 at the band
edge γ (ε → 0) ∼ g ln−1(g/|ε|). The Lyapunov exponent provides another possible definition

of the inverse localization length ξ̃ε
def= 1/γ , therefore, much shorter than the previous one:

ξ̃ε ∼ g−1 ln(g/|ε|)  ξε . In other terms the Lyapunov exponent analysis would put the
‘localization threshold’8 at ε∗ ∼ ge−gL, much below than εc ∼ g e−√

gL.
The existence of two characteristic length scales was pointed out in several works [3, 5,

10, 17]. These authors have found that the average Green’s function (i.e. the two point
correlation function) decays over9 ξε ∼ g−1 ln2(g/|ε|). The existence of two length scales
was interpreted by Fisher [3] as a consequence of fluctuations (see also [5]). The ‘typical’
localization length ξ̃ε characterizes the decay of a typical wavefunction (more precisely ξ̃ε

is related to the average of the logarithm of the wavefunction) and the ‘average’ localization
length ξε controls the decay of the average correlation functions. Since we have considered
an average quantity �(ε;L), the fact that we have extracted the scale ξε is consistent with
Fisher’s argument.

Several arguments support the existence of a delocalization transition at ε → 0. Yet
they are of quite different nature and it is interesting to provide a brief review. The first
four arguments are bulk properties of the model. (i) The Lyapunov exponent vanishes at low
energies: γ (ε) = 1/̃ξε → 0 for ε → 0 [17]. (ii) The calculation of the average Green’s
function [5, 10, 17]. (iii) The dc conductivity of the model was computed at the Dirac point in
[1, 2] and was found to be finite10. (iv) The statistical properties of the zero mode wavefunction
[9, 33, 34] indicate long-range power law correlations. Another two arguments are obtained
from scattering analysis. (v) The distribution of the transmission probability through a finite
slab of length L at zero energy was obtained in [35]; in particular the average transmission
decreases like 1/

√
L, that is slower than the behaviour 1/L for a quasi-1D weakly-disordered

conducting wire. (vi) The time delay distribution presents a log-normal distribution at zero
energy [35, 36]: PL(τ → ∞) ∼ 1

τ
√

L
exp − 1

8gL
ln2(gτ), with moments diverging with the

7 We recall that the Lyapunov exponent characterizes the exponential growth rate of the envelope of the wavefunction

[13, 30] γ
def= limx→∞ �(x)

x
, where � controls the envelope of the wavefunction ψ(x) = e�(x)× oscillations.

8 Note that in the scaling theory of localization [31] the notion of a localization threshold (or mobility edge) designates
the energy separating localized and delocalized states for the infinite system. Within this usual terminology the model
we are studying is always in a localized phase apart strictly at ε = 0. What we denote here by ‘localization threshold’
is the energy separating localized and delocalized states for a finite system of size L. With this definition there cannot
be a sharp localization transition, due to fluctuations over disorder realizations.
9 Note that a related quantity first obtained, [15, 16], is the propagator, the inverse Laplace transform of the Green’s
function, or more precisely the average conditional probability P(x, t |x′, 0) = φ0(x)φ0(x′)−1〈x|e−tH+ |x′〉 of the
related Fokker–Planck equation, where φ0(x) is the zero mode of the supersymmetric Hamiltonian H+; the result of
these works was reproduced in [32] from stochastic Riccati analysis and in [19] with the real space renormalization
group.
10 In the localized phase in 1 dimension, the ac conductivity vanishes at small frequency according to Mott’s law
Reσ(ω) ∼ ω2 ln2 ω [30].
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length of the disordered region11 [36]: τ(0) = 2L and τ(0)n ∼ g−ne2n2gL. Finally, two
arguments consider the problem on a finite interval taking into account boundary conditions.
(vii) The study of extreme value statistics of energy levels reveals spectral correlations for
ε → 0 [25], whereas a localized phase is characterized by the absence of level correlations
[38]. (viii) Finally, the present work has shown the influence of the boundary on �(ε → 0;L)

due to delocalization.
It remains an interesting issue to go beyond this analysis of the localization characterized

by the two lengths ξ̃ε and ξε , and comprehend better the role of fluctuations, for example for
the DoS �(ε;L). Another challenging issue would be to extend our results to two dimensions.
Since our method is specific to one-dimensional systems, such an extension would necessitate
the development of other methods. This might be of interest due to the recent revival of
two-dimensional random Dirac Hamiltonian physics, motivated by the study of graphene.
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Appendix A. Extreme value spectral statistics

We give the first distributions introduced in the text. We compute the integral (6) using
the residue theorem. This requires the expansion of the denominator near the pole κn =
−π2

4 (2n+1)2, n ∈ N: cosh
√

q = (−1)n

π(2n+1)
(q−κn)

[
1+ q−κn

−4κn
+ 12+4κn

6

(
q−κn

−4κn

)2
+ 10+4κn

2

(
q−κn

−4κn

)3
+· · · ].

Some algebra gives:

π1(y) =
∞∑

n=0

(−1)nπ(2n + 1) e− π2

4 (2n+1)2y (A.1)

= 1√
πy3/2

∞∑
n=0

(−1)n(2n + 1) e−(2n+1)2/4y (A.2)

π2(y) =
∞∑

n=0

[π2(2n + 1)2y − 2] e− π2

4 (2n+1)2y (A.3)

= 4√
πy3/2

∞∑
n=0

(−1)n+1n2 e−n2/y (A.4)

π3(y) =
∞∑

n=0

(−1)nπ(2n + 1)

[
π2(2n + 1)2

2
y2 − 3y +

1

2

]
e− π2

4 (2n+1)2y (A.5)

= 1

2
√

πy3/2

∞∑
n=0

(−1)n+1(2n + 1)[(2n + 1)2 − 1] e−(2n+1)2/4y (A.6)

11 This suggests that a particle of energy ε ≈ 0 injected in a disordered region of size L will spread over the full
interval and remain trapped for a very long time depending on L, whereas in a strongly localized phase the particle
would only explore a typical size ξ̃ε which is reflected in the fact that the time delay distribution reaches a limit
distribution limL→∞ PL(τ) = P∞(τ ) [37].
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π4(y) =
∞∑

n=0

[
π4(2n + 1)4

6
y3 − 2π2(2n + 1)2y2 + 2

(
π2(2n + 1)2

3
+ 1

)
y − 4

3

]
e− π2

4 (2n+1)2y

(A.7)

= 8

3
√

πy3/2

∞∑
n=0

(−1)nn2(n2 − 1) e−n2/y (A.8)

(the distribution π1(y) was already obtained in [7] where the energy ε1 is interpreted as the
gap of a spin chain. It is also related to the distribution of the random bond lengths in the real
space renormalization group procedure [3, 6, 19, 27]; π2(y) and π4(y) are given in [25]).

Expressions (A.2), (A.4), (A.6), (A.8) are obtained from equations (A.1), (A.3),
(A.5), (A.7) by using the Poisson formulae given in the next appendix and π3(y) =(−2y2 d

dy
− 3y + 1

2

)
π1(y), π2(y) = −2

(
2y d

dy
+ 1

) ∑∞
n=0 e− π2

4 (2n+1)2y and π4(y) = (
8
3y3 d2

dy2 +

8
(
y2 − y

3

)
d

dy
+ 2y − 4

3

) ∑∞
n=0 e− π2

4 (2n+1)2y .

A.1. Generating function

We propose now a method that allows for a systematic determination of the distributions
πn(y). Let us introduce the generating function

G(z, y) =
∞∑

n=1

znπn(y) = z

∫
B

dq

2iπ

eqy

cosh
√

q − z
, (A.9)

where summation was performed in the convergence radius |z| < 1. The function arccos is
single valued in the convergence disc, therefore we can write the poles of the integrand as
qn = −(nπ + arccos z)2 with n ∈ N. We compute the residues by using 1

2
√

qn
sinh

√
qn =

(−1)n
√

1−z2

2(nπ+arccos z)
(it is helpful to note that arccos(x ± i0+) = arccos(x) ∓ i0+ for x real in

[−1, +1]), whence

G(z, y) = z

y

∂

∂z

∞∑
n=0

(−1)n e−(nπ+arccos z)2y. (A.10)

In order to apply the Poisson summation formula (B.1) and get the generating function of
the distributions with odd indices, we exploit the symmetry with respect to a change in sign
of the argument

∑∞
n=0(−1)n e−(nπ+arccos z)2y = −∑−1

n=−∞(−1)n e−(nπ+arccos(−z))2y :

O(z, y) = G(z, y) − G(−z, y)

2
= z

2y

∂

∂z

+∞∑
n=−∞

(−1)n e−(nπ+arccos z)2y

= z

y

∂

∂z

1√
πy

∞∑
n=0

T2n+1(z) e− (n+1/2)2

y . (A.11)

Here the Tn(z) are the Chebychev polynomials of the first kind Tn(x) = cos(n arccos(x)).
They may be rewritten as

Tn(x) = n

2

�n/2�∑
k=0

(−1)k
(n − k − 1)!

k!(n − 2k)!
(2x)n−2k, (A.12)

9
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where �x� is the integer part. Upon insertion into (A.11) we obtain

1

z
O(z, y) =

∞∑
n=0

z2n π2n+1(y)

= 1√
π y3/2

∞∑
n=0

(−1)n(2n + 1) e− (n+1/2)2

y

n∑
k=0

(−1)k
(

n + k

n − k

)
(2z)2k. (A.13)

Using that
(
n

p

) = 0 for p > n, we may relax the constraint on the summation with respect to
k and extract (7a). Note that equation (7a) allows to recover (A.2) and (A.6).

In order to evaluate πn(y) with n = 2k, recall that we deal with a distribution of n positive
i.i.d. random variables. It follows that we may obtain π2k(y) by convolution of π2k−1(y) and
π1(y): π2k(y) = ∫ y

0 dx π2k−1(x)π1(y −x). The integration is fairly cumbersome but one may
verify that it yields (7b). This completes the computation of πn(y) for all positive integers n
as announced in the main text. One may verify that the summation of all π2k(y) (or π2k+1(y))
yields the densities given by equation (15).

Appendix B. Two useful Poisson formulae

Let us start by recalling the well-known Poisson formula
∑

n∈Z
f (n) = ∑

n∈Z
f̂ (2πn) for any

function f (x) defined on R, with f̂ (k) = ∫
R

dx e−ikxf (x) its Fourier transform. Applying
this formula we obtain∑

n∈Z

e2iπnη e−π2(n+α)2y = 1√
πy

∑
n∈Z

e2iπ(n−η)α e− (n−η)2

y , (B.1)

used for πn(y) with even indices (set η = 0 and α = 1/2) and for the DoS (set η = 0 or
η = 1/2 and α = 0). For the distributions πn(y) with odd indices we need (with η = α = 1/2)∑

n

(n + α) e2iπnη e−π2(n+α)2y = 1

i(πy)3/2

∑
n

(n − η) e2iπ(n−η)α e− (n−η)2

y . (B.2)

Appendix C. A probabilistic interpretation of the result for type (S) boundary
conditions

It is worth pointing that the function DS(y) can be interpreted as the integrated distribution of
the maximum of a Brownian excursion. Let us denote by (x(t), 0 � t � 1) such an excursion.
We establish a relation between the distribution of the maximum of such an excursion and the
function DS(y).

C.1. Maximal height of a Brownian excursion

Let us consider the distribution of the maximum M of a Brownian excursion (x(t), 0 � t � 1)

(a Brownian bridge constraint to be positive). It can be written as a ratio of two path integrals:

Proba [x(t) � M] = lim
x0→0+

∫ x(1)=x0

x(0)=x0
Dx(t) e− 1

2

∫ 1
0 dt ẋ2 ∏1

t=0 θ(x(t))θ(M − x(t))∫ x(1)=x0

x(0)=x0
Dx(t) e− 1

2

∫ 1
0 dt ẋ2 ∏1

t=0 θ(x(t))
, (C.1)

where x0 > 0 is a regulator. The ratio of path integrals may be rewritten as

Proba [x(t) � M] = lim
x0→0+

〈x0| e−H1 |x0〉
〈x0| e−H0 |x0〉 , (C.2)

10
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where H0 = − 1
2

d2

dx2 acts on functions defined on R
+ satisfying Dirichlet boundary condition

at x = 0 and H1 = − 1
2

d2

dx2 acts on functions defined on [0,M] with Dirichlet boundary
conditions. It follows that [39, 40]

Proba [x(t) � M] =
√

2

π

( π

M

)3 ∞∑
n=1

n2 e− 1
2 (

nπ
M )

2

. (C.3)

C.2. First-exit time

We consider a Brownian motion on [0, 1/
√

2] with a reflecting boundary condition at
x = 1/

√
2. We denote by τ the time at which x(t) hits x = 0 for the first time, starting from

x = 1/
√

2, and τx the time needed to reach x = 0, starting from x. h(x, q) = e−qτx obeys the
BFPE 1

2
d2

dx2 h(x, q) = q h(x, q) with boundary conditions h(0, q) = 1 and ∂xh(x, q)|1/
√

2 = 0
[41]. We easily find

h(x, q) = cosh
√

2q(x − 1/
√

2)

cosh
√

q
; (C.4)

therefore, distribution of time τ is given by inverse Laplace transform of

e−qτ = 1

cosh
√

q
. (C.5)

We introduce the sum of n i.i.d such variables: y = τ1 + · · · + τn. The distribution of this
variable was introduced in the text, πn(y) = ∫ +i∞

−i∞
dq

2iπ
eq y

coshn √
q

, where we have shown that

DS(y) = ∑∞
n=1 π2n(y) = 4√

π y3/2

∑∞
n=1 n2 e−n2/y . Comparing with (C.3) we seen that the sum

of these distributions coincides with the cumulative distribution of the Brownian excursion12

DS(y) = Proba[x(t) � M = π
√

y/2]. (C.6)

It would be interesting to know whether this remark is purely accidental or not.
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